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Abstract
The exact solution of an Ising model with competing restricted interactions on
the Cayley tree, and in the absence of an external field is presented. A critical
curve is defined where it is possible to get phase transitions above it, and a
single Gibbs state is obtained elsewhere.

PACS number: 05.50.+q

1. Introduction

We consider the semi-infinite Cayley tree J 2 of order 2, that is a graph having no cycles, from
each vertex of which, except on vertex x0, emanates exactly three edges and from vertex x0,
which is the root of the tree, emanates two edges (see figure 1).

The vertices x and y are called nearest neighbours, which is denoted by 〈x, y〉, if there
exists an edge connecting them. The vertices x and y are called second neighbours, which is
denoted by 〉x, y〈, if there exists a vertex z ∈ V , such that x, z and y, z are nearest neighbours.

Let V be the set of vertices of J 2 . We use the notation

Wn = {x ∈ V : d(x0, x) = n}
where d(x0, x) is the distance in V , that is, for any x, y ∈ V, d(x, y) is the length of the
shortest path x0 = x, x1, x2, xd = y in V (here the pairs 〈x0, x1〉, . . . , 〈xd−1, xd〉 are nearest
neighbours); and

Vn = {x ∈ V : d(x0, x) � n} =
n⋃

i=0

Wi.

The root x0 is called the 0th level and the vertices in Wn are called the nth level. Let
W1 = {x1, x2} and W2 = {x3, x4, x5, x6} (see figure 1) be the vertices of the first and second
levels.
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Figure 1. A semi-infinite Cayley tree J 2 of order 2, that is, a graph having no cycles, from each
vertex of which, except vertex x0, emanates exactly three edges and from vertex x0, which is the
root of the tree, emanates two edges.

The Ising model with competing interactions on the Cayley tree is defined by the
Hamiltonian [1]

H(σ) = −J
∑
〉x,y〈

σ(x)σ (y) − J1

∑
〈x,y〉

σ(x)σ (y) − h
∑
x∈V

σ (x) (1)

where the sum in the first term is taken over second neighbours, the sum in the second term is
taken over nearest neighbours and the spin variables σ(x) assume the values ±1.

The problem of the phase transition for this particular model in such generality cannot be
solved exactly [2–4]. In this paper we consider a slight modification to the Hamiltonian (1)
and in this case we can exactly solve the resulting new model.

2. The recurrent equations for partition functions

There are several approaches to deriving the equation describing the limiting Gibbs measures
for lattice models on the Cayley tree. One approach is based on properties of Markov random
fields on Cayley tree [5–7]. Another approach is based on recurrent equations for partition
functions [2]. Naturally both approaches lead to the same equation. However, the latter is
more suitable for models with competing interactions.

Let � be a finite subset of V. Assume that �(�) is the set of all configurations on �,
that is the functions {σ(x), x ∈ �}. Let σ̄ (V /�) be a fixed boundary configuration. The total
energy of configuration σ(�) ∈ �(�) under condition σ̄ (V /�) is defined as

H(σ(�)|σ̄ (V /�)) = −J
∑
〉x,y〈
x,y∈�

σ (x)σ (y) − J1

∑
〈x,y〉

x,y∈�

σ(x)σ (y) − h
∑
x∈�

σ(x)

− J
∑
〉x,y〈

x∈�,y /∈�

σ (x)σ̄ (y) − J1

∑
〈x,y〉

x∈�,y /∈�

σ (x)σ̄ (y).

When all boundary points {σ̄ (y), y ∈ V/�} are fixed as 1, we have the positive boundary
and when they are fixed as −1, we have negative boundary. The free boundary corresponds
to the case when the last two sums above are absent, that is formally all boundary points are
fixed as 0.

The partition function Z�(σ̄ (V /�)) in volume � under boundary condition σ̄ (V /�) is
defined as

Z� =
∑

σ (�)∈�(�)

exp(−βH(σ(�))|σ̄ (V /�))
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Figure 2. All configurations on V1 = {x0, x1, x2}.
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Figure 3. Six essentially different possibilities at the second level for σ 1.

where β = 1
T

is the inverse temperature. Then the conditional Gibbs measure µ� in volume
� under boundary condition σ̄ (V /�) is defined as

µ�(σ(�)) = exp(−βH(σ(�))|σ̄ (V /�))

Z�

.

We consider the configurations σ(Vn), the partition functions ZVn
and conditional Gibbs

measure µ�n
in volume Vn and for brevity we denote them as σn,Z

(n) and µn, respectively.
Consider the set of all configurations on V1 = {x0, x1, x2} (from figure 1) and enumerate

them as shown in figure 2.
We divide the partition function Z(n) into eight sums

Z(n) =
8∑

i=1

Z
(n)
i

where

Z
(n)
i =

∑
σn∈�(Vn):σn|V1 =σ i

exp(−βHn(σn)).

Here, �(Vn) is the set of all configurations on Vn, and Hn(σn) is the total energy of σn

with respect to either the positive boundary or the negative boundary or the free boundary.
Next, we consider the possibilities for the second level W2 of our tree with σ i on the

V1, i = 1, 2, . . . , 8. For example, there are six essentially different possibilities at the second
level for σ 1 as shown in figure 3.

We set

θ = exp(βJ ) θ1 = exp(2βJ1) and θ2 = exp(βh).

It is not hard to deduce the following system of recurrent equations:

Z
(n)
1 = θθ1θ2

[
θ2Z

(n−1)
1 + 2Z

(n−1)
2 + θ−2Z

(n−1)
4

]2

Z
(n)
2 = Z

(n)
3 = θ−1θ2

[
θ2Z

(n−1)
1 + 2Z

(n−1)
2 + θ−2Z

(n−1)
4

][
θ2Z

(n−1)

5 + 2Z
(n−1)
6 + θ−2Z

(n−1)
8

]
Z

(n)
4 = θθ−1

1 θ2
[
θ2Z

(n−1)

5 + 2Z
(n−1)
6 + θ−2Z

(n−1)
8

]2

Z
(n)

5 = θθ−1
1 θ−1

2

[
θ−2Z

(n−1)

1 + 2Z
(n−1)

2 + θ2Z
(n−1)

4

]2

Z
(n)
6 = Z

(n)
7 = θ−1θ−1

2

[
θ−2Z

(n−1)
1 + 2Z

(n−1)
2 + θ2Z

(n−1)
4

][
θ−2Z

(n−1)

5 + 2Z
(n−1)
6 + θ2Z

(n−1)
8

]
Z

(n)

8 = θθ1θ
−1
2

[
θ−2Z

(n−1)

5 + 2Z
(n−1)

6 + θ2Z
(n−1)

8

]2
.

(2)
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We briefly describe how the first of these equations is obtained. According to figure 3 we
have

Z
(n)

1 = θθ1θ2
[
θ4

(
Z

(n−1)

1

)2
+ 4θ2Z

(n−1)

1 Z
(n−1)

2 + 2Z
(n−1)

1 Z
(n−1)

4

+ 4
(
Z

(n−1)
2

)2
+ 4θ−2Z

(n−1)
2 Z

(n−1)
4 + θ−4(Z(n−1)

4

)2]
where, for example, the coefficient of the first term in the square bracket is equal to θ4,
because there are four pairs of second neighbours 〉x0, x3〈, 〉x0, x4〈, 〉x0, x5〈 and 〉x0, x6〈 the
interactions of which are not considered in Z

(n−1)
1 , and the coefficient θ2θ1θ in front of the

square bracket is taken into account for the interactions on σ 1. It is evident that after some
simplifications we obtain the first equation.

The full analysis of this system of recurrent equations is apparently difficult. In the next
section we define a slight modification made to the Hamiltonian (1) and consequently system
(2) is simplified.

3. The one-level Ising model with competing interactions

Definition 1. The second neighbours 〉x, y〈 will be named one-level neighbours and are
denoted by ¯〉x, y〈 , if vertices x and y belong to Wn for some n, that is if they are situated on
the same level.

Definition 2. The one-level Ising model with competing interactions on the Cayley tree is
defined by the Hamiltonian

H(σ) = −J
∑

¯〉x,y〈
σ(x)σ (y) − J1

∑
〈x,y〉

σ(x)σ (y) − h
∑
x∈V

σ (x) (3)

where the sum in the first term, in contrast with the Hamiltonian (1), is only taken over
one-level second neighbours.

We define

Z(n)
+ (x0) = Z

(n)
1 + Z

(n)
2 + Z

(n)
3 + Z

(n)
4

and

Z
(n)
− (x0) = Z

(n)

5 + Z
(n)

6 + Z
(n)

7 + Z
(n)

8 .

Then the system (2) is reduced to the following

Z
(n)
1 = θθ1θ2

(
Z

(n−1)
+ (x0)

)2

Z
(n)

2 = Z
(n)

3 = θ−1θ2
(
Z

(n−1)
+ (x0)

)(
Z

(n−1)
− (x0)

)
Z

(n)
4 = θθ−1

1 θ2
(
Z

(n−1)
− (x0)

)2

Z
(n)

5 = θθ−1
1 θ−1

2

(
Z

(n−1)
+ (x0)

)2

Z
(n)
6 = Z

(n)
7 = θ−1θ−1

2

(
Z

(n−1)
+ (x0)

)(
Z

(n−1)
− (x0)

)
Z

(n)

8 = θθ1θ
−1
2

(
Z

(n−1)
− (x0)

)2

(4)

since we do not take into account the interactions of second neighbours: 〉x0, x3〈, 〉x0, x4〈,
〉x0, x5〈 and 〉x0, x6〈.

We define

un(x
0) = Zn

+(x0)

Zn−(x0)
. (5)
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Then, from system (4), by simple calculus we have

un(x
0) = θ2

2

θ2θ2
1 u2

n−1(x
0) + 2θun−1(x

0) + θ2

θ2θ2
1 + 2θ1un−1(x0) + θ2u2

n−1(x
0)

n = 2, 3, . . . . (6)

Evidently,

un(x
0) = µn(σn(x

0) = 1)

µn(σn(x0) = −1)
.

If we can find the limit of un(x
0) as n tends to infinity, we will find the ratio for the

probability of a 1 to the probability of a −1 at the root for the limiting Gibbs measure. Thus,
the fixed points of the equation (6) describe the translation invariant limiting Gibbs measure
of the model (3).

If θ = 1, that is J = 0, equation (6) reduces to the well-known equation for the usual
Ising model [2]

un(x
0) = θ2

2

(
θun−1(x

0) + 1

un−1(x0) + θ1

)2

n = 2, 3, . . . .

4. The proof of existence of phase transitions

We study the fixed points of equation (6) by solving the following equation:

u = θ2
2
θ2θ2

1 u2 + 2θ1u + θ2

θ2θ2
1 + 2θ1u + θ2u2

.

In this paper we consider the case h = 0, that is θ2 = 1, because in this situation we obtain
a rather simple and descriptive answer concerning phase transitions. Our main result is the
following:

Theorem. We consider a one-level Ising model with competing interactions (3), and with

zero external field. Then, the curve θ∗ = 1+
√

1+3θ 4

θ 2 in the plane (θ, θ1) is a critical curve for
phase transitions, namely, for an arbitrary pair of parameters (θ, θ1) above the critical curve
a phase transition takes place and for any pair of parameters on or below the critical curve
there occurs a single Gibbs state.

Proof. We consider the equation

u = θ2θ2
1 u2 + 2θ1u + θ2

θ2θ2
1 + 2θ1u + θ2u2

. (7)

This equation is equivalent to the following cubic equation

(u − 1)(u2 + (α + 1)u + 1) = 0

where

α = 2θ1 − θ2
1 θ2

θ2

so that it is sufficient to investigate the quadratic equation

u2 + (α + 1)u + 1 = 0. (8)

Equation (8) has two positive roots, if α < −3.
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θ1

θ

3

1

3

Figure 4. The curve θ∗ = 1+
√

1+3θ4

θ2 in the plane (θ, θ1).

This inequality is valid, if

θ1 >
1 +

√
1 + 3θ4

θ2
.

Assume

θ∗ = 1 +
√

1 + 3θ4

θ2
. (9)

The behaviour of this function has the following form (see figure 4). Thus for an arbitrary
pair of parameters (θ, θ1), which is situated above the critical curve (9), equation (7) has three
positive different roots, u∗

1, u
∗
2 = 1, u∗

3 and for pairs which are situated on or below the critical
curve (9), equation (7) has a single positive root u∗ = 1.

Note that if θ = 1, we have θ∗
1 = 3. This critical value of θ1 is well known for the usual

Ising model [4]. Now we return to equation (7) and set

ψ(u) = θ2θ2
1 u2 + 2θ1u + θ2

θ2θ2
1 + 2θ1u + θ2u2

. (10)

It is not hard to show by simple calculus that in the domain above the critical curve (9)
(see figure 4), this function will be increasing and will have a single positive point of inflection
in the interval (1, u∗

3), where u∗
3 is the largest fixed point.

It is easy to show diagrammatically (see figure 5) that if 0 < u1 < u∗
1, un in equation (6)

will monotonically increase to u∗
1, the smallest fixed point.

For values u∗
1 < u1 < u∗

2, un will decrease monotonically to u∗
1. For values u∗

2 < u1 < u∗
3,

un will increase monotonically to u∗
3. Finally, if u1 > u∗

3, un will decrease monotonically to u∗
3.

The smallest fixed point thus gives the limiting probability ratio for the positive boundary.
The largest fixed point, on the other hand, gives the limiting probability ratio for the negative
boundary, and the middle value u∗

2 = 1 corresponds to the free boundary.
Therefore, the roots u∗

1 and u∗
3 of equation (8) are stable fixed points of the recurrent

equation (6). Hence, the theorem is proved. �

It is necessary to note that if θ � 1, which is the ferromagnetic case, one anticipates the
existence of phase transitions. But for θ < 1, which is anti-ferromagnetic by J , an unexpected
result is obtained.

The description of the Gibbs states corresponding to the roots u∗
1, u

∗
2 = 1, u∗

3 will be given
elsewhere.
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1u∗
2 1u∗ = 3u∗

Figure 5. The largest stable fixed point u∗
3, the smallest stable fixed point u∗

1 and the middle value
u∗

2 = 1 of the recurrent equation (6).

5. Conclusion

The Ising model, which was originally regarded as a ferromagnetic model, has recently found
some applications in many other physical, biological and chemical systems, and even in
sociology. The model (1) considered above is a natural generalization of the Ising model,
and a model of the form (3) has recently been investigated by Monroy [8, 9] to understand
the physical aspects associated with the Husimi tree or the Kagome lattice. Interestingly,
no exact solutions of the phase transition problem were found. Instead, some solutions for
specific parameters were presented. On a similar note, the topic of statistical mechanics on
nonamenable graphs is a modern growing field [10, 11].

We have presented the exact solution for the Hamiltonian (3). A critical curve is defined
where it is possible to get phase transitions above it, and a single Gibbs state is found elsewhere.
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